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A procedure for deriving certain high order difference formulas for the Helmholtz equation 
is given. Families of formulas of order 2, 4. and 6 are derived. The distinction between 
“atomic” and “nonatomic” formulas is made, and a nonatomic formula of order 4 is given for 
a similar equation with variable coefficients. Numerical results using these formulas are given. 

1. INTRODUCTION 

In this paper we present the description of a simple technique for deriving finite 
difference formulas of high order for solving linear partial differential equations. The 
procedure is illustrated for the Helmholtz equation on a rectangle with Dirichlet 
boundary conditions. Our procedure has strong connections with the Mehrstellenver- 
fahren of Collatz 111 and the HODIE method of Lynch and Rice (2 1. Houstis and 
Papatheodorou [3 ] have studied the performance of fourth and sixth order HODIE 
formulas for the Helmholtz equation on a set of problems. Boisvert 141 derived two 
one-parameter families of fourth order HODIE formulas for the Helmholtz equation. 
Discretization which is optimal with respect to a certain norm of the truncation error 
was obtained by Boisvert for certain values of the parameter. Extensions yielding 
sixth order accuracy for the Helmholtz equation were also obtained. 

Recently we have presented in 16-8 ] an alternative method for generating high 
order difference formulas for linear partial differential equations. When this procedure 
is applied to the Helmholtz equation, we not only obtain the discretizations given by 
the HODIE method but also several other fourth and sixth order schemes. 
Theoretically, it is possible to apply the procedure to obtain formulas of even higher 
order by using more than nine mesh points, however, such formulas have little prac- 
tical interest. We therefore restrict ourselves to formulas that involve mesh points 
lying on a single cell or element. In this paper we present difference formulas of order 
two, four, and six for solving the Helmholtz equation and show how other formulas, 
including those derived by the HODIE method can be obtained from our formulas. 
Our procedure for generating formulas has been applied to a similar equation with 
variable coefficients. A numerical comparison of results obtained by using a variety 
of formulas on a set of problems is also given. 
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2. DERIVATION OF DIFFERENCE FORMULAS 

Consider the Helmholtz equation 

u,, + uyy + flu =.0x, Y), x,yinR andA< 

and 

(2.1) 

u = g(x, y) = known for (x, y) on the boundary dR, 

where R is a region such that a square mesh of size h can be used to subdivide the 
region. This assumption is made to simplify the presentation. A generalization of the 
procedure to arbitrary regions can be carried out on the same lines as presented here. 
Boundary conditions other than the Dirichlet type can also be incorporated in the 
procedure. 

In order to obtain a difference formula for a mesh point it is convenient to consider 
a local coordinate system (x, y) with its origin at the mesh point. Next, the solution of 
the boundary value problem (2.1) in the neighbourhood of the mesh point is 
expanded in an infinite series whose terms are the solutions of the differential 
equation. An approximation to the solution is obtained by truncating the series. The 
unknown coefficients in the truncated series are expressed in terms of the nodal 
values of the solutions at those mesh points that are to be included in the difference 
formula. This procedure gives the required formula. 

Rather than using the solutions of the differential equation, it is easier to expand 
the solution of (2.1) in a power series. A set of constraints on the coefficients is 
obtained by demanding that the differential equation be satisfied. In the present 
example, let 

u =x ai,jxi# and j-(x, y) = x ci. ixiyi, 

If u satisfies the differential equation, then we must have 

i,j = 0, 1, 2 )... . (2.2) 

Ci,j= (i + l)(i + 2)aitl.j + U + l)U + 2)ai.j+2 + kai,.i, (2.3) 

i, j = 0, 1,2 )... . 

Furthermore, the interpolation of u on a set of mesh points (x,, yk) gives the 
following addition conditions: 

u(Xk,Yk)=uk=Cai,jX:Yj,, k = 0, 1, 2 ,..., M. (2.4) 

Before a difference formula over the stencil of mesh points (xk, yk) appearing in 
(2.4) is derived from Eqs. (2.3) and (2.4), it is necessary to introduce some approx- 
imations of u in the expansion (2.2). One way to do this is to set ai,j = 0 for i + j > it 
for some fixed n. Consequently, all the equations in (2.3) for which i + j > n arc 
eliminated and Eqs. (2.4) now involve finite sums. A difference formula exists if the 
systems of equations (2.3) and (2.4) are consistent. To obtain a formula, we form a 
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linear combination of the ci,j and express it in terms of Q,,,~ using Eqs. (2.3). The coet 
ficients of the linear combination of cij are chosen in such a way that it can be 
expressed in terms of the nodal values uk, and all the Q,,~ are eliminated. This 
procedure can be described in terms of an (n + l)(n + 2)/2-dimensional vector space 
S spanned by Q,,~. From Eq. (2.3) it is clear that c~,,~ also form a vector space S,, 
which is a subspace of S. Similarly, from (2.4) it can be seen that uk also form a 
vector space S, c S. Every nontrivial vector in S, n Sz, expressed in terms of ci., 
and also in terms of u k, provides a formula. A general formula may contain free 
parameters, the maximum number of such parameters depends upon the dimension of 
S, n S,. Note that all ci,j are not linearly independent. For convenience, we choose 
the mesh points such that the uk are linearly independent for the value of n chosen. 

A difference formula obtained in this manner is exact at least for all polynomials 
of degree <n, that is, for polynomials in IP,. In the case when the mesh is uniform, 
the truncation error is of order h”, m > n. Such a formula is called “atomic” in the 
sequel. Another type of approximation leads to formulas which have truncation errors 
of order h”, though, they many not be exact in IL‘,,. Such formulas are called 
“nonatomic.” 

When the mesh is uniform, it is possible to introduce another approximation. The 
Eqs. (2.3) are multiplied by h”j+* and all the terms of order h”, m > n, are neglected 
in the set of Eqs. (2.3) and (2.4). As a consequence of this assumption all the terms 
containing ai.,i for which i +j > n are automatically eliminated. Now the same 
procedure described earlier is applied to derive a difference formula. During the 
process of elimination, any term of order hm, m > n, is also neglected. Formulas 
obtained in this manner are not exact in F n, although, their truncation error is at 
least of order n. Hence, these formulas are nonatomic. From our numerical 
experiments it appears that the nonatomic formulas perform as well as the atomic 
ones, at least when the mesh is refined. 

Some nonatomic formulas can be obtained directly from the atomic formulas by 
simply deleting the terms of order h”, m > n. However, it is sometimes possible to 
obtain nonatomic formulas over a given stencil when no atomic formula exists. This 
indeed is the case for the Helmholtz equation with variable coefficients, for which a 
nonatomic formula of order 4 is derived for a 9-point stencil using a uniform mesh. 

In practice, it is convenient to replace the linear combination of ci.i appearing in 
the formulas by an equivalent expression containing the values of the function f over 
a set of points (xj*,~;F) j = 0, l,..., M*. The points (x,~,J~,~) need not necessarily be 
the mesh points. In the case of atomic formulas, the replacement should be exact in 
P,. While in the nonatomic formulas, such a replacement should be exact to within 
the order h”. Such a replacement results in HODIE-type formulas. An atomic 
formula becomes nonatomic if the replacement is not exact in P,. Boisvert [ 5 1 has 
proposed a sixth order HODIE formula (2.15) for the Helmholtz equation which is 
not exact in P,. 

In this paper we shall consider n = 2, 4, and 6 and give difference formulas for the 
Helmholtz equation (2.1) over a stencil of 5 and 9 points. The mesh is taken to be 
uniform. The general formulas contain some free parameters. All the HODIE-type 
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formulas for the Helmholtz equation over the 9-point stencil can be obtained by 
suitable choices of the parameters. 

Over a 5-point stencil consisting of mesh points (0, 0), (k/z, 0), and (0, k/z), an 
atomic formula of order 2 containing two parameters p and q (p f 0) is given by 

IP + +h2ql u,, - 14~ -L~‘(P - %)I u, =PG,,,~~ + dc,., + c,,,,) h4, 642) 

where Ou, = u(h, 0) + u(-h, 0) + ~(0, h) + ~(0, -h). If the same stencil is chosen for 
the values off, the right-hand side of (A2) can be replaced by 

1wfo + (P - 2qMll h2. (2.5) 

The principal error term of formula (A2) is 

[ (12 - h2)q - 2p]&l + ao.4) A4 + W2.2h” (2.6) 

which shows that formula (A2) is not exact for polynomials of degree 4 but is exact 
in P,. The truncation error of (A2) is of order h2. No choices of p and q can 
anihilate expression (2.6). Thus, there does not exist a fourth order formula over the 
Spoint stencil considered here. 

One of the simplest choices of p and q is p = 1 and q = 0, which gives the standard 
5-point formula 

ou, - (4 - Dz2) u, = Co,oh2 =f,h2. (2.7) 

Other choices of p and q can also be made. 
Using the same procedure and a 9-point stencil formed by the addition of the four 

mesh points (G, rth) and defining q u, by 

wl = G, h) + 4-k h) + u(-h, 4) + u(h, -A), 

we can write a general fourth order atomic formula as 

[4p + $h2(q - r)] ou, + [p + $h2r] “,“o 

- 2Op - Hz’(6p - 2q + r) + ; h4(p - q) 1 u,, (A41 

= 16~ - @‘(p - q)l q,,oh2 +P[c,,, + c,,21 h4 + qk,,, + co,41 h6 + rc2,2h6 

The parameters p, q, and r are arbitrary except that p # 0. The right-hand side of 
(A4) can be replaced in terms of the values off over a set of 13 points as 

[r + (8 + $M’)q - (4 + $h2)p]f,h2 + !(P - q) h2gf, 

- + [p - 4q + 3r] h20fo + f h20fo (2.8) 
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or as 

where 

and 
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[r t (3 t +nh’)q + (1 - #?)p]f,h2 t +(p -4) hQf;, 

t gq - r) h20f, + &(3r -p + q) hQf,, 

~f”=S~~,o)+fj-~,Oj+SjO,~j t/(0.-+) 

(2.9) 

All the atomic formulas of order 4 over the 9-point stencil given by Boisvert 15 1 
can be obtained from (A4) and (2.8) or (2.9). For example, the choice of p = q = 1 
and r = 0 gives the formula proposed by Boisvert [S, p. 701. One simple special case 
of (A4) is obtained by setting p = 1, q = r = 0. We also replace ci,j in terms of the 
values off at the same 5 points. This replacement is exact only upto hJ and hence 
this formula is no longer atomic. Such a formula is given by 

4024, + q u, - (20 - 6Ah2 + ;A2h4) u. = (4 -1h2/2)f,h2 + (h’/2) Ofo. 

(2.10) 

The principal error term of (A4) is given by 

(3Oq - 12p - Ah2q)(a 6,0 + Uo,6) h6 t (2q + 12r - 4p - lh*r)(a,,, t U*,4) h’. (2.11) 

It is possible to anihilate the expression in (2.11) by choosing 

2 Ah2 
. 7 

q=y-j$ and r-&-g (2.12) 

and obtain a sixth order formula. The resulting formula is a special case of a more 
general sixth order formula containing three parameters p, q, and r and given by 

Ih’t+(q-r)A’h’ 

- [20tIh2 (20p+j+i’h’ ( 2q-6p-r+& -+(p-q)A’h” u. j ] 

Ah2 + + (q -p) A’h’] c,,,h* + [ 1 +pAh2](c2,, + co,*) h4 
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+ [j+qnh’](c,,,+c,,,)h6+ [++dnqc”h* 

+ Up--3Oq+f+qlh’ (c~,~+c~,~)~~ I 
+ 

[ 
&+4p2q- 12rfrM2 (C,q2+C2,4)h8. 1 WI 

A study of the principal error term of (A6) shows that it is not possible to get an 
eight order formula on the 9-point stencil used in (A6). Some special cases of (A6) 
are 

(1) p=q=& I Y=T (2.13) 

which is the formula given by Houstis and Papatheodorou [3]. With these choices of 
p, q, and r the right-hand side of (A6) can be expressed in terms offn, OfO, Of,, and 
Of0 so that the resulting formulas is still atomic. 

(2) p=-&(13+Ah*/8), q = - &( 1 + 8z2/32), I 
r=mi (2.14) 

gives a formula in which the right-hand side can be expressed in terms of the values 
f,, Of,, LlfO, and Of0 and the formula remains atomic. 

(3) p=q=r=O (2.15) 

gives a formula which appears to be simpler than the other formulas. However, the 
right-hand side cannot be replaced in terms off,, OfO, OJO, and q f,. Additional 
points are required if the formula is to remain atomic. However, if th% requirement is 
relaxed, we obtain the formula given by Boisvert [S, p. 119-1201 which is not exact 
in Ip,, which has the truncation error of order h6. We have solved several problems 
using this and other formulas and have found that the nonatomic formulas perform as 
well as the atomic formulas. Similar observations have been made by Boisvert, 
although this distinction is not made clear. 

(4) 
7 Ah2 1 1 

P=-+x’ 9=-x, 
r=-Fi. 

(2.16) 

This choice eliminates the coefficients, c~,~, c~,~, c~,~, and c,,, and gives formula 
(2.12) obtained from formula (A4) earlier. Again an atomic formula is not obtainable 
in terms off,, OfO, and q f0. 



450 MANOHARAND STEPHENSON 

3. FORMULAS FOR VARIABLE COEFFICIENTS 

Following the procedure, described in Section 2. we now give formulas of order 2 
and 4 for the equation 

4-G Y) u,, + b(x, Y) u,, + w(x, vh =./lx, Y). 

Using the expansions 

(3.1) 

U(x, Y) = C aj, jxiJ+T b(x, .Y) = x Pi,jxiJ+? w(x, y) = y wi, jx’4” 

along with the expansions of u and f given in (2.2). The standard 5-point formula of 
order 2 and a nonatomic formula of order 4 over the 9-point stencil are given here 
using the notation 

u, = up, O), 4 = u(O, h), u3 = q-h, O), uq = u(0, -h), 

u, = u(h, h), 246 = 24(-h, h), u, = u(-h, -h), U8 = u(h, -h). 

Formula of order 2: 

ao,o(u, + 4) +Po,&2 + u4) - uo(2ao.o + wo,, - wo.oh2) = C0.“h2 =foh2* 

(3.2) 

This formula is exact in P, and has a truncation error of order 2. A nonatomic 
formula of order 4 in which 

a I,0 = aI,0 /ao.o and P,,, =Po.,/Po.o 

is given by 

(u, + u3)15ao,o -PO,, - h2(@,,oal,o +~o,~ao,l) + h2(a2., + a,,, + wo.o/2)l 
+ h2 + ~4Wo.o - aoqo - h2~0,,POJ + ~,,OPLO) + h”ca2.0 +/30.2 + %.“P)l 
- 0, - udlP,.o -Po.o~,,o + h2(~l.0~0,0 - Wl.OY21 
- W4, - u4)lao., - ao,o~o.l + h2Gij,,l~o,o - wo.l)/21 
+ (a,,, + PO,,) au,/2 + Mao,, - ~o.oPo,I)(~5 + u6 - u7 - +J/2 
+ WI,, -Po,o~,,o >(u, - U6 - u7 + %)/2 
- uollO(ao,o +Po,o> - 2h2Pl,o(al.o +Pl,o> +Po.l(ao,l +Po,l)l 
+ 2h2(a2,, + ao.2 +P2,0 +Po,2 - 2wo.,) + h4(wl.o@,.o + wo,,PO,,) 

- h4( w2,o + 00.2 >J 

= 6h2co,, - h4G,,oc,,o +po,so,,) + h”h,o + co,z). (3.3) 
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The truncation error of formula (3.2) is of order h4. When ai,j, Pi,j, Oi,,ir andfi,i 
are replaced by the values of the functions a, b, w, and f, respectively, due care must 
be taken to preserve the order. This does require the use of additional points such as 
(h/2,0), (-h/2,0), etc. Numerical results obtained by using both formulas (3.2) and 
(3.3) are given in the next section. 

4. NUMERICAL RESULTS 

We have solved many different boundary value problems given by (2.1) over a unit 
square for various values of g(x, y) and L. Table I we compare the numerical results 
obtained for three problems using various atomic and nonatomic methods. 

Method 1 uses the second order atomic formula (2.7). Methods 2 and 4 use the 
atomic fourth and sixth order formulas (2.9 with p = 4 = 1 and Y = 0) and (2.13) 
respectively. While Methods 3 and 5 use the nonatomic fourth and sixth order 
formulas (2.10) and (2.16), respectively. The convergence rates were estimated by 

where eh, and ehz are the maximum errors for h, = i and h, = 713;. The matrix 
equations were solved using successive over relaxation (SOR) in single precision on a 
DEC 2060. 

TABLE I 

Maximum errors, (N) q lON 

Problem Met‘nod h = 1/4 h = 118 

1 0.7351(-1) 0.3229(-3) 0.9081;~2) / .Rj 

1 2 0.2991(-l) 0.28881-2) 0.16331-3) 3.98 
3 0.1038(-1) 0.1612(-Z) 0.1171(-3j 3.76 
4 0.1277(-3) 0.7093(-5) 0.3502(-6)' 4.34 
5 0.1047~-2) 0.4428(-4) 0.5561(-6! 5.68 

1 0.1272 0.1078 0.4001(-l) 1.43 
2 2 0.1837 0.3671(-1) 0.3186(-2) 3.53 

3 0.6963(-l) 0.1944(-l) 0.1813(-2) 3.1+2 
4 0.3172(-2) 0.3582(-3) 0.9239(-5) 5.28 
5 0.4039(-Z) 0.2969(-3) 0.7179(-5) 5.3'1 

1 0.1414(2) 0.1602(l) 0.3092(O) 2.37 
3 2 0.1318(z) 0.2627(0? 0.1865(-l) 3.82 

i 
O.J332(2) 0.3050~0) 0.1864(-l) ii.iJj 
0.8336(l) 0.8447(-1) 0.8142(-3) i!.70 

5 0.8445(l) 0.79471-l) 0.7082(-3) 6. !1 
5====IIIII:==ESEITI=lirllS-l-l-r-5Zil-f:=================================== 

l affected by roundoff error. 

?81!51/3-7 
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Problems l-3 were chosen from Houstis and Papatheodorou (3 I. They are: 

Problem 1: 

u = (cash 10x + cash IOy)/cosh 10, A = -100. 

Problem 2: 

cash 10x 
24= + 

cash 2Oy 
cash 10 cash 20 ’ 

/I = -100. 

Problem 3: 

u = cos 20~ + sin 20(x - y), A= -30. 

To demonstrate the effectiveness of formula (3.3) for solving Eq. (3.1), we compare 
in Table II the numerical results obtained using the second order method (3.2) and 
our fourth order method (3.3). The problems chosen were: 

Problem 4: 

u = x*yyx* + y2), a=x*, b=y’, w = -14. 

Problem 5: 

cash 10x 
U= 

cash 4y cash 4y cash 10x 
cash 10 

+ 
cash 4 ’ 

il= 
cash 4 ’ 

b= 
cash 10 ’ 

w = - 100 c;;shh41 . 

Problem 6: 

u = x2y2 exp(x + y), a = l/(x* +4x + 2), b = l(y* + 4.~ + 2), 

w=-l/(lO+xZ +y2). 

TABLE II 

Maximum errors for auXX + bu + wu = f 
YY 

::iLI-EiiTLS:E=::l:;11::-:::1::1:11:r::1==================================~ 

Problem Method h I l/4 h = l/8 h = l/16 

4 
1 0.2063(-2) 0.5401(-3) 0.1362(-3) 1.98 
2 0.1756(-Z) 0.1156(-3) O.a217(-5) 3.al 

5 
1 0.4141(-1) 0.2096(-l) 0.5734(-2) 1.a7 
2 0.2542(-l) 0.2038(-2) 0.1257(-3) 4.01 

6 
1 0.1378(-1) 0.3968(-2) 0.1052(-2) 1.91 
2 0.4408(-2) 0.3123(-3) 0.1445(-4) 4.43 

=___=_==_:=:==:===_======================================================== 
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5. CONCLUDING REMARKS 

The convergence rates estimated from the numerical results for a variety of 
problems demonstrate that the order of the method is as expected. One would 
normally expect that the atomic formulas would be more accurate than the 
nonatomic ones. This indeed is the case for solutions which are polynomials of a 
certain degree. For example, the sixth order atomic formulas are exact for 
polynomials of degree up to 7, however, the nonatomic formulas are not. But, as the 
size of the mesh is decreased, the reduction of the error is at a rate predicted by the 
order of the method. It may be mentioned here that the higher order methods do 
require that the solution satisfies certain smoothness requirements. If the solution 
does not satisfy these smoothness conditions, a higher order method may not perform 
any better than a lower order method. 

We tested a large number of second, fourth, and sixth order methods by choosing 
the free parameters from a study of the truncation error, so as to optimize certain 
properties. However, we were not able to find a best all round method. One can 
construct problems for which one of the methods of a particular order performs better 
than all of the other methods. However, it is always possible to construct a problem 
where this situation is reversed. 

The method described here has been applied to generate nonatomic fourth order 
difference formulas in the case of more general elliptic equations with variable coef- 
ficients, and to some three-dimensional problems. These formulas have given excellent 
numerical results over a wide range of problems. 
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